物理氣相沉積(Physical Vapour Deposition,PVD)技術(shù)表示在真空條件下,采用物理方法,將材料源——固體或液體表面氣化成氣態(tài)原子、分子或部分電離成離子,并通過低壓氣體(或等離子體)過程,在基體表面沉積具有某種特殊功能的薄膜的技術(shù)。 物理氣相沉積的主要方法有,真空蒸鍍、濺射鍍膜、電弧等離子體鍍、離子鍍膜,及分子束外延等。發(fā)展到目前,物理氣相沉積技術(shù)不僅可沉積金屬膜、合金膜、還可以沉積化合物、陶瓷、半導(dǎo)體、聚合物膜等。
物理氣相沉積技術(shù)早在20世紀(jì)初已有些應(yīng)用,但30年迅速發(fā)展,成為一門極具廣闊應(yīng)用前景的新技術(shù),并向著環(huán)保型、清潔型趨勢(shì)發(fā)展。20世紀(jì)90年代初至今,在鐘表行業(yè),尤其是高檔手表金屬外觀件的表面處理方面達(dá)到越來(lái)越為廣泛的應(yīng)用。
真空蒸鍍基本原理是在真空條件下,使金屬、金屬合金或化合物蒸發(fā),然后沉積在基體表面上,蒸發(fā)的方法常用電阻加熱,高頻感應(yīng)加熱,電子束、激光束、離子束高能轟擊鍍料,使蒸發(fā)成氣相,然后沉積在基體表面,歷史上,真空蒸鍍是PVD法中使用最早的技術(shù)。
濺射鍍膜基本原理是充氬(Ar)氣的真空條件下,使氬氣進(jìn)行輝光放電,這時(shí)氬(Ar)原子電離成氬離子(Ar+),氬離子在電場(chǎng)力的作用下,加速轟擊以鍍料制作的陰極靶材,靶材會(huì)被濺射出來(lái)而沉積到工件表面。如果采用直流輝光放電,稱直流(Qc)濺射,射頻(RF)輝光放電引起的稱射頻濺射。磁控(M)輝光放電引起的稱磁控濺射。 電弧等離子體鍍膜基本原理是在真空條件下,用引弧針引弧,使真空金壁(陽(yáng)極)和鍍材(陰極)之間進(jìn)行弧光放電,陰極表面快速移動(dòng)著多個(gè)陰極弧斑,不斷迅速蒸發(fā)甚至“異華”鍍料,使之電離成以鍍料為主要成分的電弧等離子體,并能迅速將鍍料沉積于基體。因?yàn)橛卸嗷“?,所以也稱多弧蒸發(fā)離化過程。
離子鍍基本原理是在真空條件下,采用某種等離子體電離技術(shù),使鍍料原子部分電離成離子,同時(shí)產(chǎn)生許多高能量的中性原子,在被鍍基體上加負(fù)偏壓。這樣在深度負(fù)偏壓的作用下,離子沉積于基體表面形成薄膜。
物理氣相沉積技術(shù)基本原理可分三個(gè)工藝步驟:
(1)鍍料的氣化:即使鍍料蒸發(fā),升華或被濺射,也就是通過鍍料的氣化源。
(2)鍍料原子、分子或離子的遷移:由氣化源供出原子、分子或離子經(jīng)過碰撞后,產(chǎn)生多種反應(yīng)。
(3)鍍料原子、分子或離子在基體上沉積。
物理氣相沉積技術(shù)工藝過程簡(jiǎn)單,對(duì)環(huán)境改善,無(wú)污染,耗材少,成膜均勻致密,與基體的結(jié)合力強(qiáng)。該技術(shù)廣泛應(yīng)用于航空航天、電子、光學(xué)、機(jī)械、建筑、輕工、冶金、材料等領(lǐng)域,可制備具有耐磨、耐腐蝕、裝飾、導(dǎo)電、絕緣、光導(dǎo)、壓電、磁性、潤(rùn)滑、超導(dǎo)等特性的膜層。
隨著高科技及新興工業(yè)發(fā)展,物理氣相沉積技術(shù)出現(xiàn)了不少新的先進(jìn)的亮點(diǎn),如多弧離子鍍與磁控濺射兼容技術(shù),大型矩形長(zhǎng)弧靶和濺射靶,非平衡磁控濺射靶,孿生靶技術(shù),帶狀泡沫多弧沉積卷繞鍍層技術(shù),條狀纖維織物卷繞鍍層技術(shù)等,使用的鍍層成套設(shè)備,向計(jì)算機(jī)全自動(dòng),大型化工業(yè)規(guī)模方向發(fā)展。